
U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NATIONAL WEATHER SERVICE
NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 346

NUMERICAL SOLUTION OF THE PRIMITIVE EQUATIONS
ON THE

CONNECTION MACHINE

James J. Tuccillo
Automation Division

December 29, 1988

This is an unreviewed manuscript, primarily
intended for informal exchange of information
among NMC staff members.

Ir'

Io F? 'iC

I t,' f.

p~~~~ V

NUMEICAL SOLUTION OF THE PRIMITIVE EQUATIONS
ON THE

CONNECTION IIACHINE

James J. Tuccillo
National MIeteorological Center

Vashington. D.C.

1. INTODUCIION

Since the late 1960' s. the hydrostatic primitive equations

have been the basis for operational Numerical Veather

Prediction (NWP). These equations describe the time rate of

change of the three dimensional atmospheric state variables:

wind, temperature, moisture and pressure. Numerical time

integration, from a set of initial conditions, for a period
of 2 to 10 days provides guidance that has become

indispensable to the operational forecaster. These numerical

solutions require significant computer resources and

operational weather centers have sought out the most advanced

digital com.uters available. The most advanced systems,

however, are often saturated shortly after installation as

{the NVP models increase in resolution and sophistication. The

nature of the problem is such that a doubling of the spacial

resolution, in 3 dimensions, increases the CPU requirements

by a factor of 16 and the memory requirements by a factor of

8. The demand for increased memory and computational speed

will most likely continue into the foreseeable future as

modelers strive for increased accuracy through better spacial

resolution and greater sophistication in the representation

of physical processes.

The last 20 years has seen remarkable growth in the

computational speed of computers and the size of random

access memories. (see Fig. i). The development of vector

processors capable of processing many operands in a pipelined

manner has been a major development. The CRAY-1 and CDC CYBER

205 are the most popular examples of this architecture. As

pipelines machines approach a ceiling in performance do to a
limit on the speed of signal propagation in semiconductor

chips. the emphasis of the supercomputer industry has shifted

towards the development of parallel architectures. Nany

computationally intensive tasks are inherently parallel and

arcnitectures wnicn can exploit tnat parallelism can ne usea

to solve problems once thought to be intractable.

Parallel processors have developed along at least three

paths. The first involves the interconnection of a few very

fast processors to a shared memory. Examples of this approach

include the current architectures of Cray Research and

ETA/CDC. The second path is represented by the so-called

Dataflow machines. In this architecture a detailed analysis

of the program is performed. Tnstructions are generated to

perform operations as operands become available thus avoiding

the von Neumann bottleneck. The Very Long Instruction Vord (

VLIT) architecture of Iultiflow Computer is an example. The

third path involves the interconnection of thousands of

relatively slow processors. The Connection Machine (CO) of

Thinking Mlachines Corporation is an example of this type of

architecture.

This paper will be concerned with discussing the NWP problem

on the CI. Section 2 will present the formulation of an NWP

model including the finite difference operators and the

organization of calculations. In section 3 the CO will be

introduced and the hardware characteristics discussed.

Section 4 will describe how the NWP model was implemented on

the CI. Section 5 will present performance figures for the

model on the CII and several other architectures. Section 6

will'be the summary and conclusions.

.

I

I

o IBM 3090-400

00 ~ ~ ~ ~ ~ ~ ~ pea 0

'b ~~~~CDC 1604/
b se"I~~~~~~aa g

CYSE 208 · IBM-300

- / ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'

oEUC VALVE 400

~~~~-! ,,,. ,./,---.-1,..,~0 /...
1995

1950 1956 1960 1966 1970 1976 1990 1986

Fig. 1 History of peak supercomputer performance in

MTega f 1 op s.

1090 tQO



2. MODEL FORMULATION

In this section a grid-point, primitive equation model will
be presented.

2.1 Primitive equations on a polar sterecraphic projiection

The primitive equations on a polar stereographic projection
in the sigma coordinate ( Phillips. 1957 ) are presented

below.

au an au .au ap a uy-vx (3u Ia =- -mu-- m--( - -m C 8 fv + + ( (1) at a ay dva- a-x + 2a2 ttuh 

v =-mW -mv -m C 8 8 -m -fu-uv +
-dt dx dy a-& 2 dy 2m at ~ ~~~~ ~- U''m~ - u 2a2

8 ae a6 I a8-=-m-ms-~~CY-Z7 +dt a -, dy MUj . c_~

.7a

dtJ uua-t

(i (a&a) p Ja)
(;ttur"ItC at )rvc4ipitahbonk + k-at )ziiti.

(2)

(3)

aq _aq aq' aq (q (aq (q- - cxW--a - + _ + _ (4)
dt ax dy ds dt wfbo> dt p,..)

Iap. 2 a ' up.°

at J =ax Jm}
+ a (mPiaR m du (5)

a =-c 8 (6)

acPI-=
au (UP.) a . (7,m20 d ( P*5 + - |t I- (7)

It, m J dy ( m+ -' at

I



where
CY _ PP

0-286
P.

P P .one6

2m=
1 +sin

2a cos 4 cos 
X=

I +smi

2acos sinA
y=

1 +sin4

f=zn +

and the other symbols have the usual meteorological meaning.

These equations describe the time rate of change of four

quantities. u. v, 8, q. which vary in 3-dimensions aexd one

quantity. p~. which varies in 2-dimensions. In terms of Fig.

2. u. v. 8, q. are defined over NX. NY. and NZ while p* is

defined over NX and NY.

2.2 Horizontal and Vertical Grid Structure

The horizontal grid is the "BH grid described by Arakawa (

1972 ) and illustrated in Fig. 3. This grid has very good

geostrophic adjustment properties and the placement of the

variables facilitates the programming effort. The vertical

structure is presented in Fig.4 and represents a standard

configuration found in many models. 1



NZ

NX

' Fig. 2 Geometric definition of NX. NY and NZ.

+

0

+

0
U, V

+

+

+

+

+

0

+

0

+'

p*,e, q

Fig. 3 The Arakava "B" grid. The circle points represent the

location of the u and v wind components and the plus points

represent the location of p*, theta and specific humidity.

E



NZ - --u,v,,q, ---------

0

0o
0

6

2 --------- u,v,e,q, ---------

-u,v,e,q,< . ..

//// z% p ////7777 77
,Fig.4,.Yertical sigma structure of the model The solid lines

represent the interfaces between sigma layers and the dashed

lines represent the mid-points of the sigma layers.

2.3 Space differencing and averaqi=n operators

Tne x ana y norizontal aerlvaltive are approxiiatea Dy tne

following formulas:

d-xs ()T - (()i+.,j-(),,j+ ,-(),.,-() ,j+~,) (de-)ax
___ (f.5

a, - Y- (()ij (),j+ + +()i+,- ()+i+i,j)* (d-ely)

where the i and j indices refer to either the plus points for

a derivative at the circle points or the circle points for a

derivative at the plus points. Please note that i increases

in the eastward direction and j increases in the southward

direction. 

I



The vertical advection terms are approximated by the

following formula:

Z~a( [f | )i,1 ()k A + )k ()k-1)* 
't :2 t , -t-'k 2 Fk-""+1Fk+

where the k + 1/2 and k - 1/2 indices refer to the sigma

layer interfaces and the k + I and k - I indices refer to the

sigma layers.

The horizontal averaging operator is as follows:

() = (()Qj+ ()O+,J,+()O~j+ ()+,+1) *0.25

where the i and j indices refer to plus points for an average

at the circle points and the circle points for an average at

the plus points.

The formulation for the vertical integration of the vertical

velocity and geopotential are standard and not presented here.

2.4 Time differencin

The time differencing scheme is the split-explicit method

described by Gadd ( 1978 ). In this scheme the terms

responsible for gravity-inertia oscillations are time

integrated seperately from the terms associated with

advection and physical processes. The advantage of this

approach is one of economy since the terms associated with

fast moving and meteorologically unimportant waves can be

solved with a small timestep for computational stability

while the remining terms are solved less frequently with a

longer time step. The net result is a considerable savings in

computer time over a scheme which solves all terms with a

timestep needed for stability of the gravity-inertia waves.

Details of the method and a stability analysis can be found

in Gadd's paper and the references within.

I

I



2.4.1 Gravity-Inertia terms

The gravity-inertia terms are integrated with the forward-

backward scheme as described by Gadd. The first step is a

forward time difference of the surface pressure tendency

equation.

allp. = p* +F *Atgtr

where F represents the RHS of (5).

Next the thermodynamic equation and moisture conservation

equations are forward time differenced with only the vertical

advection terms after the vertical velocity is computed with

(7).

80 8 +VA*Atg.

q = q+VA*A t+
where VA represents the vertical advection terms of (3) and

(4).

Vith the updated surface pressure, theta, and specific

humidity, the geopotential is vertically integrated using

(6). The equations of motion, (1) and (2), are then updated.

u = u +[Y + PGE + MCT +f *At9WML++1 +
u+ VA& + P +MCTF + f

2

= V+ VAA + PGF +l+MCTh[ - f < ] * h+1)

where VA represents the vertical advection, PGF represents

both pressure gradient terms, ICT represents the terms with

map coordinates and f is the coriolis parameter.

After two consecutive timesteps. the advective terms of (1),

(2), (3). and (4) are evaluated. This procedure is described

in section 2.4.2.
V t t:X;:X7-X? -D'S: V E ' \ f~~~~~~~~~~~~~~~~~ ? 



2.4.2 Horizontal advection terms

The horizontal advection terms are solved with the Lax-

Vendroff scheme ( Lax and Vendroff. 1960). In this scheme.

provisional values of the prognostic variables are computed

at time level n + 1/2. Using these provisional values, the

forcing is recomputed and the updated values of the

prognostic variables are obtained at time level n + 1. This

procedure is represented below.

Ia T i* Atop~i
U 2= +H.4F '*

2

a 2= + ^ * at
2

q 2= + HA'* lay

q 2 q+ HA 2* At ly

1 7r~~~Y

v =o~+ HA 2 * A t a,
zk+l ML 1+

Jk+i A I 
8 = 8 + H 2 *At

1a+1 a fri

q = q + HA 2 * th!.

.~~~~~~~~~~r..
-where HA represents the horizontal advection terms of (1),

(2), (3), and (4). The n + 1/2 provisional values are

computed at the circle points for those prognostic variables

defined at the plus points. Similarly, the n + 1/2

provisional values are computed at the plus points for those

prognostic variables defined at the circle points.

SX .- :?-:: X I

i



2.5 Horizontal Boundary Conditions

ror tnis stuay tne moael was conrigurea wltn cyclic Dounlnary

conditions in the x-direction and fixed boundary conditions

in the y-direction for all prognostic variables. In real data

applications tendencies from a larger scale model can be

applied to the boundaries in a manner similar to many

operational limited-area models.

2.6 Sequence of calculations

For each full timestep there are two gravity-inertia wave

timesteps and one advective timestep. The sequence of steps

to solve the equations for each full timestep are presented
in Fig. 5. For each step in the sequence the calculations
take place at all NX x NY horizontal grid points in parallel.

The calculation of the vertical velocity and the geopotential

couple each vertical layer to the one below it for the

solution of the inertia-gravity wave terms. The horizontal

advective terms computed in the second 'k' loop are not

vertically coupled. The vertical coupling of the layers is of

no consequence for the CO as the parallelism is across the

horizontal domain. As we will see later. parallel processing

of such a fine-grained algorithm is a problem on the CRAY Y-

HP. The CRAY will function best if the code is setup so that

multitasking is by vertical layer. The recursive propery of

the vertical velocity and geopotential make a restructuring

of the code necessary for optimum execution on the CRAY.



GRAVITY-INERTIA WAVE TERMS

FOR GW = I TO 2 DO

p*(n+l) = p (n) + . . .

FOR K = 1 TO NZ DO

(K) = 6(K- 1 ) + . . .

0 (K) (n+t) = e (K)n)

q (K) (n+l) = q

U ( K ) (n+l)

+

+

K)=@ (K- I) + .

= U (K ) (n) +

+-V(K)(n+l) =V (K) (n )

END FOR

END FOR

ADVECTIVE TERMS

FOR K = 1 TO NZ

U(K ) (n+1 ) =u (K) (n) +

V(K)(n+l) =V(K)(n) +

0 (K ) (n+l) = e (K )(n) +

q (K ) (n+l) = q ( K ) (n) +

END FOR

Fig. 5 Sequence of calculations to advance the solution by

on full timestep. 'K' refers to the vertical layer and 'n'

indicates tne .tme level.

( K ) (n)

. . .



3. TE CONNECTION MCHINE

The Connection Machine ( Hillis. 1986) is a single

instruction/multiple data (SIMD) parallel computer with up to

65536 processors controlled by a conventional front-end

computer (see Fig. 6). Each processor has 8K bytes of memory

yielding a total memory capacity of 512 Mlegabytes or 128

million 32-bit floating point numbers. Problems requiring

more physical processors than are available are supported

through a virtual processor mechanism which is invisible to

the user. Each physical processor can simulate several

virtual processors with an associated decrease in memory and

increase in execution time. For example, if each physical

processor simulates two virtual processors then the execution

time will double and the memory available for each virtual

processor will be 4K bytes. Fig. 7 presents various virtual

processor configurations and the associated memory.

Interprocessor communication is handled by a network built on

a 12-dimensional hypercube. This hardware supports two

mechani-ms for communication. The router is the more general

mechanism and allows for data to be sent from any processor

directly to any other processor. The less general method is

refered to as NEYS communication after the four directions on

a two-dimensional grid: North. East, Vest and South. The NEWTS

mechanism allows for the efficient exchange of information

between adjacent processors on a grid.

4. IMIIPLEMENTATION ON THE CONNECTION MACHINE

4.1 Data structure

The most straight forward implementation of the model on the

Connection Machine consist of assigning a virtual processor

to each column. The following C* code will define a data

structure called "state" which specifies the memory layout

within each processor and then creates a variable called

points" which consists of NX by NY instances of the

structure.
: ~ ~ ~ · Z i:::



Fig. 6 Architecture of the Connection Ilachine. ( from

Thinking fachines Corporation Documentation of the Connection

lachine )

Fig. 7 Various conf igurations of virtual processors and

memory on the Connection Machine. ( from Thinking Ilachines

Corporation Documentation of the Connection Iachine )

Ratio Virtual Memory each

n proc=esors -- (CM-2)
1 64K 8K bytes

2 128K 4K bytes

4 2SaK 2K bytes

8 512K 1K bytes

16 1M 512 bytes

32 2M 2S6 bytes

64 4' 128 bytes

128 am '64 bytes
256 16isM 32 bytes
512 32! 16 bytes

Ix 64M 8 bytes

2K 128M 4 bytes

4X 2S6M 2 bytes

I

I

I



#define NX 256

#define NY 256

waerine i 3Z

domain state {

float u [ NZ

float v [ NZ

float t [ NZ

float q [ NZ

float petar

float zstar

domain state points

/* number of grid points in x-dir */

/* number of grid points in y-dir */

to numner or layers -t

I; /* u wind
I; /* v wind

]; /* potential temperature

1; /* specific humidity

/* surface pressure

;); /* terrain height

*1

*1

*1

*1

NX * NY 1;

The u and v wind components are staggered one half grid

distance in both the x and y directions from the potential

temperature points on the "B" grid. In terms of the processor

where they are stored, the wind components are colocated with

the mass point to the "northwest".

4.2 Finite difference and averacrina operators

Interprocessor communimcation is slow compared to the floating

point performance for data within a processor. MACROS to

retrieve data from neighboring processors have been coded in

the Parallel Instruction Set ( PARIS ) of the Connection

Machine using the NEWS communication. These MACROS are called

XP1. XM1, YP1. and YI1 for x plus 1. x minus 1, etc. Using

these MACROS. the basic horizontal coupling operators can be

efficiently computed.

The C* code to compute the x-derivative. y-derivative and

four point average of u wind at the mass points in parallel

for some layer k is presented below.

i

i
I

i
i

i

i

i

I
i.

i

I



The orientation of the points relative to each other for the

above code segment is shown in Fig. 8.

It can be shown that this code segment minimizes the amount

.of interprocessor cowmmnication. Similar code exists to

compute the other horizontal coupling terms. The update of

the prognostic variables, once all the terms are computed,

will occur in the processor memories at the nominal

performance of the machine.

It is interesting to note that approximately 40% of the

running time of the model is spent doing interprocessor

communication. In other words, if data could be accesses from

adjacent processors at the same speed as data within a

processor the code would run 40% faster.

tempi = YMl ( u [ k ] );

tempz = tempi + u x ;

temp3 = XIn ( temp2 );

/* u bar */
ubar = ( temp2 + teup3 ) * 0.25;

/* dx of u */
dxu = ( temp2 - temp3 ) * 0.5;

/* dy of u */
temp3 = tempi - u [ k];

dyu = ( temp3 + XMU ( temp3 ) ) * 0.5;

I



+ + +

o 0
(j-lwi-l) i~j-1): 

+ ± +l
o 0

(i-l,j) (inj) 

+ + I
Fig. 8 Orientation of points for finite difference and

averaging operators. I is the index in the x-direction and J

is the index in the y-direction.

5. PEEORMIANCE FIGURES

Comparing the performance of algorithms on several different

computer systems can be a difficult because the organization

of the code may favor one system over the other. The

.requirement of contiguous long vectors for "good" vector

performance on the CDC CYBER 205 is a well known example of

this problem. For this study, every attempt was made to be

fair to all systems. In this section. the performance of the

Connection Ilachine and several other computer systems will be

presented.

5.1 Model performance on different architectures

An ANSI 77 FORTRAN version of the model was designed which

should execute efficiently on most systems. The code was

organized so that vectorizing compilers for vector

architectures would see a vector length equal to the

horizontal domain. The loops over the horizontal domain.

however, contains many instructions so that non-vector

architectures will see enough computational work to allow for

"instruction scheduling". The CYBER 205 compiler was able to

vectorize every horizontal loop. Chaining or linked triads

were encouraged through the liberal use of parenthesis to

I



help the compilers identify opportunities for 
these time

saving instructions.

All timings or tne FroRTRN version or tne coae 
were done tor

a 50 x 50 horizontal grid with 32 vertical layers. 
The

minimum grid distance on the image plane was set at 40 kms i

and the appropriate time step for computational stability 
was

used. The forecast length was set for 24 hours 
or one

forecast day. This configuration represents a limited 
area

domain of about 2000 kms on a side. This domain size 
is

unrealistically small and was chosen to so that CPU 
timings

from a variety of systems with much different performance

characteristics could be obtained. A realistic configuration

would be a 256 x 256 horizontal grid corresponding 
to a

domain of approximately 10000 km on a side. Since the amount

of computational work is linear with the number of 
grid

points, the timings obtained with the 50 x 50 grid 
can be

scaled to arrive at timings for a 256 x 256 grid. For the

most restrictive architecture. the CYBER 205. this 
is valid

because a vector length of 2500 ( 50 X 50 ) is long enough

.for vector efficiency of over 90%. I am assuming that

sufficient memory is available to hold the larger 
domain and

that memory conflicts are not significantly changed. 
Assluming

64-bit floating point precision. this problem will 
need about

80 Megabytes of memory for a 256 x 256 grid with 32 layers.

The introduction of physical parameterization for 
turbulence. 

radiation, and precipitation will increase the memory

requirements.

Table 1 shows the CPU timings for various systems. The 
NAS

9050 is an IBM 370 plug compatible system featuring 
scalar

processing with a 38ns clock. It performance is comparable to

the CDC 205 using the scalar processor only. The 
Very Long

Instruction Vord Iultiflow system does very well compared 
to

the NAS and 205 when you consider that its price tag 
in about

$500K. The 205. using its vector processor. achieves 
a

speedup of about 10 to 1 for 64 bit and 20 to I 
for 32 bit

over the scalar processor. These are typical values 
for very

well vectorized code. The speed difference between the 
CRAY X-

lMP and Y-MP reflects. almost exactly, the difference 
in the

f
i

I

i



cycle time ( 8. 5ns for the X-MP vs. 6 2ns for an early YMP ).

SYSTE

NAS 9050

CDC 205(scalar)

CDC 205(scalar)

PRECISION

32 bit

32 bit

64 bit

Ifultiflow i4/200 32 bit

CDC 205(vector) 64 bit

CRAY X-MP(1 proc) 64 bit

CDC 205(vector) 32 bit

COMP ILER

IBU VS-FORTRAN

CDC FTN200

CDC fTN200

TRACE FORTRIAN

CXDC FTN200

C= 77

CDC Ff200

CRAY Y-IP(1 proc) 64 bit CFT77 i730 s
I.

TABLE 1. CPU times for the FORTRAN version of the model. 
All

times were computed for a 50 x 50 horizontal grid 
and scaled

to a 256 x 256 grid. The forecast length is 24 hours. 
there

are 32 vertical layers and the grid distance is 40 kas.

'1

5.2 Mlodel performance on the Connection Machine

CPU timings for the C* version of the model on the 
Connection

Xacnine are presentea in tale z. Tne aomain size conslaerea

is again 256 x 256 with 32 layers. The numbers presented 
are

a combination of measured and computed results using the 16K

Connection Ilachine at NRL Since this problem is completely

parallel and the Connection Ifachine scales linearly, the

computed results are accurate.

CPUTIME

55417 s

46784 s

40186 s

34524 s

3382 s

2439 s

1861 s



The best wall time performance is achieved when one processor

is assigned to each vertical column; a VP ratio of 1. A 64K

processor machine is required and it will solve the problem

in a little less than half of the time required by the CRAY

Y-UP using one processor. The best use of the processors in

terms of speed per physical processor is obtained when

several virtual processors are assigned to each physical

processor. Pipelining of instructions across several virtual

processors within a physical processor results in a better

utilization of the hardware as shown by the CPU/VP ratios in

table 2. A VP ratio of 4 is probably best because anything

higher results in too little memory per processor to solve

the problem once physical parameterizations are added. For a

64K machine, a 512 X 512 grid would yield a VP ratio of 4 and

would take- 2438 secs to solve.

PHYSICAL PROCXSSORS VP RATIO CPUTIHE CPU/VP RATIO

64K 1 768 s 768 s

16K 4 2438 s 610 s

8K 8 4656 s 582 s

TABLE 2. CPU times for the C* version of the model with a

256 x 256 grid. 40km grid spacing. 32 layers and a forecast

length of 24 hours for different numbers of virtual

processors per physical processors. The CPU time normalized

by the VP ratio is also presented.

5.3 Multitaskina on the CRAY Y-bP

The FORTRAN version of the model was also run on the CRAY

Y-lIP using multiple processors. The code was multitasked

using the recently available autotasking software. This

software features a preprocessing step which analyzes the

data dependencies within the code and inserts microtasking

compiler directives into the source prior to the actual

::



-compilation process. The processed source is available for

inspection and may be further modified prior to compilation.

This preprocessing step automates what was previously a

manual task. As with all source preprocessors, one should

expect to go through several iterations before obtaining an

optimized version of the code.

The source output from the autotasking software was modified

by including additional compiler directives. The FORTRAN

statements remained unchanged. The timing results on the CRAY

Y-MP using 4 and 8 processors is shown in Table 3. The

results, indicated in terms of speedup over a uniprocessed

run, indicate a point of diminishing returns with 4

processors.

NUMBER OF PROCESSORS SP=.UP OVER 1 PROCESSOR

d Z.6

.8 2.8

TABLE 3. Speedup over I processor for multitasked versions

of the code on the CRAY Y-UP.

The explanation of why an additional four processors failed

to speedup the code significantly is as follows. Refering

back to Fig. 5, the first 'k' loop contains a recursive

computation for the vertical velocity and geopotential. This

dependency prevents the 'k' loop from being microtasked. The

microtasking is then applied to the NX x NY dimension. For

the NX = NY = 50 grid dimension used in the run, the

synchonization of processors at the end of each horizontal

loop becomes a bottleneck. In other words, the calculations

are too fine grained. The second 'k' loop contains no

vertical dependencies and was microtasked. Since a majority

of the work is contained in the first 'k' loop, a point was

reached where additional processors could not be effectively

used.



The solution, fortunately. is straight forward. An increase

in the horizontal domain to the desired size of 256 x 256

should result in significantly less synchonization overhead

at the end of each horizontal loop. Alternatively. a seperate:

'k' loop could be constructed to compute the vertically

coupled portions of the inertia-gravity wave calculations.

The first 'k.' loop would not contain any vertical

dependencies and could then be microtasked. This additional

'k' loop would obviously xicrotask over the horizontal loop 

but would result in less code being subjected to a fine-

grained bottleneck. A significant increase in temporary

storage, however. would be required. Unfortunately, as of

this time neither of these opportunities has been pursued. 

6. SUMIARY AND CONCLUSION

Solution of the primitive equations on the CO has been found

to be straight forward and very efficient. The execution time

for the dynamics is comparable to vector supercomputers. This

'paper did not consider physical parameterizations, however.,

some general conclusions can be reached. Since a processor

was assigned to each column and physical parameterizations

generally do not involve horizontal information exchange, it

can be anticipated that physics can be computed very quickly

on the CM. The nominal floating point performance of the

machine. 1 Gigaflop. should be achievable as all calculations

will involve data already in the processor memories. Perhaps

more importantly. physical parameterization routines can be

coded 'as serial code with looping over 'k'; a very natural

way of thinking. The projection of the code so as to execute

on all processors simultaneously is straighforward.

7. ACKNOWLEDGEIENTS

I would like to thank John Church of NRL for helping me get

started on the Connection Machine and for being available to

answer many questions. Robert Whaley of Thinking Machines

I
I
i
I
I



-, :.. '. . : .."

Corporation wrote the MACROS used for interprocessor

communications and offered many useful suggestions. 
Jim

Abeles. Iic Talian and Steve Perry of Cray Research

generously volunteered to run the model on the Cray 
systems

end discuss the results with me. Chuck Aston and Louis 
. --.

Hackerman of IfMultiflow Cozmputer also volunteered to run the

model on their system and supply me with the results. I would

like to especially thank Fran Balint for giving 
me the time

necessary to investigate the Connection Machine.

8. REFERENCES

Araxawa, A. l7Z: veslgn or tne ucLA general circulation

model. Numerical Simulation of Weather and Climate. 
Dept. of

Ieteorology. Univ. of California. Los Angeles. Tech. Rept.

No 7.

Gadd. A.J.. 1974: An economical explicit integration 
scheme.

Ileteor_ Office Tech. Note 44. 7 pp-

Hillis. D.V.. 1986: The Connection Machine. IT Press.

Cambridge. 1986.

Lax, P.. and B. Wendroff. 1960: Systems of conservation 
laws.

Comm. Pure and Appl. Math.. 13. 217-237.

Phillips. N.A.. 1957: A coordinate system having some special

advantages for numerical forecasting. J lIeteor.. 14. 184-

185. '

I

I

I

I
Ii

i


